Building libc++¶
Getting Started¶
On Mac OS 10.7 (Lion) and later, the easiest way to get this library is to install Xcode 4.2 or later. However if you want to install tip-of-trunk from here (getting the bleeding edge), read on.
The basic steps needed to build libc++ are:
Checkout LLVM:
cd where-you-want-llvm-to-live
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
Checkout libc++:
cd where-you-want-llvm-to-live
cd llvm/projects
svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx
Checkout libc++abi:
cd where-you-want-llvm-to-live
cd llvm/projects
svn co http://llvm.org/svn/llvm-project/libcxxabi/trunk libcxxabi
Configure and build libc++ with libc++abi:
CMake is the only supported configuration system.
Clang is the preferred compiler when building and using libc++.
cd where you want to build llvm
mkdir build
cd build
cmake -G <generator> [options] <path to llvm sources>
For more information about configuring libc++ see CMake Options.
make cxx
— will build libc++ and libc++abi.make check-cxx check-cxxabi
— will run the test suites.
Shared libraries for libc++ and libc++ abi should now be present in llvm/build/lib. See using an alternate libc++ installation
Optional: Install libc++ and libc++abi
If your system already provides a libc++ installation it is important to be careful not to replace it. Remember Use the CMake option
CMAKE_INSTALL_PREFIX
to select a safe place to install libc++.make install-cxx install-cxxabi
— Will install the libraries and the headers
Warning
- Replacing your systems libc++ installation could render the system non-functional.
- Mac OS X will not boot without a valid copy of
libc++.1.dylib
in/usr/lib
.
The instructions are for building libc++ on FreeBSD, Linux, or Mac using libc++abi as the C++ ABI library. On Linux, it is also possible to use libsupc++ or libcxxrt.
It is sometimes beneficial to build outside of the LLVM tree. An out-of-tree build would look like this:
$ cd where-you-want-libcxx-to-live
$ # Check out llvm, libc++ and libc++abi.
$ ``svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm``
$ ``svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx``
$ ``svn co http://llvm.org/svn/llvm-project/libcxxabi/trunk libcxxabi``
$ cd where-you-want-to-build
$ mkdir build && cd build
$ export CC=clang CXX=clang++
$ cmake -DLLVM_PATH=path/to/llvm \
-DLIBCXX_CXX_ABI=libcxxabi \
-DLIBCXX_CXX_ABI_INCLUDE_PATHS=path/to/libcxxabi/include \
path/to/libcxx
$ make
$ make check-libcxx # optional
Experimental Support for Windows¶
The Windows support requires building with clang-cl as cl does not support one required extension: #include_next. Furthermore, VS 2015 or newer (19.00) is required. In the case of clang-cl, we need to specify the “MS Compatibility Version” as it defaults to 2014 (18.00).
CMake + Visual Studio¶
Building with Visual Studio currently does not permit running tests. However, it is the simplest way to build.
> cmake -G "Visual Studio 14 2015" ^
-T "LLVM-vs2014" ^
-DLIBCXX_ENABLE_SHARED=YES ^
-DLIBCXX_ENABLE_STATIC=NO ^
-DLIBCXX_ENABLE_EXPERIMENTAL_LIBRARY=NO ^
\path\to\libcxx
> cmake --build .
CMake + ninja¶
Building with ninja is required for development to enable tests. Unfortunately, doing so requires additional configuration as we cannot just specify a toolset.
> cmake -G Ninja ^
-DCMAKE_MAKE_PROGRAM=/path/to/ninja ^
-DCMAKE_SYSTEM_NAME=Windows ^
-DCMAKE_C_COMPILER=clang-cl ^
-DCMAKE_C_FLAGS="-fms-compatibility-version=19.00 --target=i686--windows" ^
-DCMAKE_CXX_COMPILER=clang-cl ^
-DCMAKE_CXX_FLAGS="-fms-compatibility-version=19.00 --target=i686--windows" ^
-DLLVM_PATH=/path/to/llvm/tree ^
-DLIBCXX_ENABLE_SHARED=YES ^
-DLIBCXX_ENABLE_STATIC=NO ^
-DLIBCXX_ENABLE_EXPERIMENTAL_LIBRARY=NO ^
\path\to\libcxx
> /path/to/ninja cxx
> /path/to/ninja check-cxx
Note that the paths specified with backward slashes must use the \ as the directory separator as clang-cl may otherwise parse the path as an argument.
CMake Options¶
Here are some of the CMake variables that are used often, along with a
brief explanation and LLVM-specific notes. For full documentation, check the
CMake docs or execute cmake --help-variable VARIABLE_NAME
.
- CMAKE_BUILD_TYPE:STRING
- Sets the build type for
make
based generators. Possible values are Release, Debug, RelWithDebInfo and MinSizeRel. On systems like Visual Studio the user sets the build type with the IDE settings. - CMAKE_INSTALL_PREFIX:PATH
- Path where LLVM will be installed if “make install” is invoked or the “INSTALL” target is built.
- CMAKE_CXX_COMPILER:STRING
- The C++ compiler to use when building and testing libc++.
libc++ specific options¶
-
LIBCXX_INSTALL_LIBRARY
:BOOL
¶ Default:
ON
Toggle the installation of the library portion of libc++.
-
LIBCXX_INSTALL_HEADERS
:BOOL
¶ Default:
ON
Toggle the installation of the libc++ headers.
-
LIBCXX_ENABLE_ASSERTIONS
:BOOL
¶ Default:
ON
Build libc++ with assertions enabled.
-
LIBCXX_BUILD_32_BITS
:BOOL
¶ Default:
OFF
Build libc++ as a 32 bit library. Also see LLVM_BUILD_32_BITS.
Default:
ON
Build libc++ as a shared library. Either LIBCXX_ENABLE_SHARED or LIBCXX_ENABLE_STATIC has to be enabled.
-
LIBCXX_ENABLE_STATIC
:BOOL
¶ Default:
ON
Build libc++ as a static library. Either LIBCXX_ENABLE_SHARED or LIBCXX_ENABLE_STATIC has to be enabled.
-
LIBCXX_LIBDIR_SUFFIX
:STRING
¶ Extra suffix to append to the directory where libraries are to be installed. This option overrides LLVM_LIBDIR_SUFFIX.
-
LIBCXX_INSTALL_PREFIX
:STRING
¶ Default:
""
Define libc++ destination prefix.
libc++experimental Specific Options¶
-
LIBCXX_ENABLE_EXPERIMENTAL_LIBRARY
:BOOL
¶ Default:
ON
Build and test libc++experimental.a.
-
LIBCXX_INSTALL_EXPERIMENTAL_LIBRARY
:BOOL
¶ Default:
LIBCXX_ENABLE_EXPERIMENTAL_LIBRARY AND LIBCXX_INSTALL_LIBRARY
Install libc++experimental.a alongside libc++.
-
LIBCXX_ENABLE_FILESYSTEM
:BOOL
¶ Default:
LIBCXX_ENABLE_EXPERIMENTAL_LIBRARY
Build filesystem as part of libc++experimental.a. This allows filesystem to be disabled without turning off the entire experimental library.
ABI Library Specific Options¶
-
LIBCXX_CXX_ABI
:STRING
¶ Values:
none
,libcxxabi
,libcxxrt
,libstdc++
,libsupc++
.Select the ABI library to build libc++ against.
-
LIBCXX_CXX_ABI_INCLUDE_PATHS
:PATHS
¶ Provide additional search paths for the ABI library headers.
-
LIBCXX_CXX_ABI_LIBRARY_PATH
:PATH
¶ Provide the path to the ABI library that libc++ should link against.
-
LIBCXX_ENABLE_STATIC_ABI_LIBRARY
:BOOL
¶ Default:
OFF
If this option is enabled, libc++ will try and link the selected ABI library statically.
-
LIBCXX_ENABLE_ABI_LINKER_SCRIPT
:BOOL
¶ Default:
ON
by default on UNIX platforms other than Apple unless ‘LIBCXX_ENABLE_STATIC_ABI_LIBRARY’ is ON. Otherwise the default value isOFF
.This option generate and installs a linker script as
libc++.so
which links the correct ABI library.
-
LIBCXXABI_USE_LLVM_UNWINDER
:BOOL
¶ Default:
OFF
Build and use the LLVM unwinder. Note: This option can only be used when libc++abi is the C++ ABI library used.
libc++ Feature Options¶
-
LIBCXX_ENABLE_EXCEPTIONS
:BOOL
¶ Default:
ON
Build libc++ with exception support.
-
LIBCXX_ENABLE_RTTI
:BOOL
¶ Default:
ON
Build libc++ with run time type information.
-
LIBCXX_INCLUDE_BENCHMARKS
:BOOL
¶ Default:
ON
Build the libc++ benchmark tests and the Google Benchmark library needed to support them.
-
LIBCXX_BENCHMARK_NATIVE_STDLIB
:STRING
¶ Default::
""
Values::
libc++
,libstdc++
Build the libc++ benchmark tests and Google Benchmark library against the specified standard library on the platform. On linux this can be used to compare libc++ to libstdc++ by building the benchmark tests against both standard libraries.
-
LIBCXX_BENCHMARK_NATIVE_GCC_TOOLCHAIN
:STRING
¶ Use the specified GCC toolchain and standard library when building the native stdlib benchmark tests.
libc++ ABI Feature Options¶
The following options allow building libc++ for a different ABI version.
-
LIBCXX_ABI_VERSION
:STRING
¶ Default:
1
Defines the target ABI version of libc++.
-
LIBCXX_ABI_UNSTABLE
:BOOL
¶ Default:
OFF
Build the “unstable” ABI version of libc++. Includes all ABI changing features on top of the current stable version.
-
LIBCXX_ABI_DEFINES
:STRING
¶ Default:
""
A semicolon-separated list of ABI macros to persist in the site config header. See
include/__config
for the list of ABI macros.
LLVM-specific options¶
-
LLVM_LIBDIR_SUFFIX
:STRING
¶ Extra suffix to append to the directory where libraries are to be installed. On a 64-bit architecture, one could use
-DLLVM_LIBDIR_SUFFIX=64
to install libraries to/usr/lib64
.
-
LLVM_BUILD_32_BITS
:BOOL
¶ Build 32-bits executables and libraries on 64-bits systems. This option is available only on some 64-bits unix systems. Defaults to OFF.
-
LLVM_LIT_ARGS
:STRING
¶ Arguments given to lit.
make check
andmake clang-test
are affected. By default,'-sv --no-progress-bar'
on Visual C++ and Xcode,'-sv'
on others.
Using Alternate ABI libraries¶
Using libsupc++ on Linux¶
You will need libstdc++ in order to provide libsupc++.
Figure out where the libsupc++ headers are on your system. On Ubuntu this
is /usr/include/c++/<version>
and /usr/include/c++/<version>/<target-triple>
You can also figure this out by running
$ echo | g++ -Wp,-v -x c++ - -fsyntax-only
ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu"
ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/4.7/../../../../x86_64-linux-gnu/include"
#include "..." search starts here:
#include <...> search starts here:
/usr/include/c++/4.7
/usr/include/c++/4.7/x86_64-linux-gnu
/usr/include/c++/4.7/backward
/usr/lib/gcc/x86_64-linux-gnu/4.7/include
/usr/local/include
/usr/lib/gcc/x86_64-linux-gnu/4.7/include-fixed
/usr/include/x86_64-linux-gnu
/usr/include
End of search list.
Note that the first two entries happen to be what we are looking for. This may not be correct on other platforms.
We can now run CMake:
$ CC=clang CXX=clang++ cmake -G "Unix Makefiles" \
-DLIBCXX_CXX_ABI=libstdc++ \
-DLIBCXX_CXX_ABI_INCLUDE_PATHS="/usr/include/c++/4.7/;/usr/include/c++/4.7/x86_64-linux-gnu/" \
-DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr \
<libc++-source-dir>
You can also substitute -DLIBCXX_CXX_ABI=libsupc++
above, which will cause the library to be linked to libsupc++ instead
of libstdc++, but this is only recommended if you know that you will
never need to link against libstdc++ in the same executable as libc++.
GCC ships libsupc++ separately but only as a static library. If a
program also needs to link against libstdc++, it will provide its
own copy of libsupc++ and this can lead to subtle problems.
$ make cxx
$ make install
You can now run clang with -stdlib=libc++.
Using libcxxrt on Linux¶
You will need to keep the source tree of libcxxrt available on your build machine and your copy of the libcxxrt shared library must be placed where your linker will find it.
We can now run CMake like:
$ CC=clang CXX=clang++ cmake -G "Unix Makefiles" \
-DLIBCXX_CXX_ABI=libcxxrt \
-DLIBCXX_CXX_ABI_INCLUDE_PATHS=path/to/libcxxrt-sources/src \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/usr \
<libc++-source-directory>
$ make cxx
$ make install
Unfortunately you can’t simply run clang with “-stdlib=libc++” at this point, as clang is set up to link for libc++ linked to libsupc++. To get around this you’ll have to set up your linker yourself (or patch clang). For example,
$ clang++ -stdlib=libc++ helloworld.cpp \
-nodefaultlibs -lc++ -lcxxrt -lm -lc -lgcc_s -lgcc
Alternately, you could just add libcxxrt to your libraries list, which in most situations will give the same result:
$ clang++ -stdlib=libc++ helloworld.cpp -lcxxrt
Using a local ABI library installation¶
Warning
This is not recommended in almost all cases.
These instructions should only be used when you can’t install your ABI library.
Normally you must link libc++ against a ABI shared library that the
linker can find. If you want to build and test libc++ against an ABI
library not in the linker’s path you needq to set
-DLIBCXX_CXX_ABI_LIBRARY_PATH=/path/to/abi/lib
when configuring CMake.
An example build using libc++abi would look like:
$ CC=clang CXX=clang++ cmake \
-DLIBCXX_CXX_ABI=libc++abi \
-DLIBCXX_CXX_ABI_INCLUDE_PATHS="/path/to/libcxxabi/include" \
-DLIBCXX_CXX_ABI_LIBRARY_PATH="/path/to/libcxxabi-build/lib" \
path/to/libcxx
$ make
When testing libc++ LIT will automatically link against the proper ABI library.