Using libc++¶
Getting Started¶
If you already have libc++ installed you can use it with clang.
$ clang++ -stdlib=libc++ test.cpp
$ clang++ -std=c++11 -stdlib=libc++ test.cpp
On OS X and FreeBSD libc++ is the default standard library
and the -stdlib=libc++
is not required.
If you want to select an alternate installation of libc++ you can use the following options.
$ clang++ -std=c++11 -stdlib=libc++ -nostdinc++ \
-I<libcxx-install-prefix>/include/c++/v1 \
-L<libcxx-install-prefix>/lib \
-Wl,-rpath,<libcxx-install-prefix>/lib \
test.cpp
The option -Wl,-rpath,<libcxx-install-prefix>/lib
adds a runtime library
search path. Meaning that the systems dynamic linker will look for libc++ in
<libcxx-install-prefix>/lib
whenever the program is run. Alternatively the
environment variable LD_LIBRARY_PATH
(DYLD_LIBRARY_PATH
on OS X) can
be used to change the dynamic linkers search paths after a program is compiled.
An example of using LD_LIBRARY_PATH
:
$ clang++ -stdlib=libc++ -nostdinc++ \
-I<libcxx-install-prefix>/include/c++/v1
-L<libcxx-install-prefix>/lib \
test.cpp -o
$ ./a.out # Searches for libc++ in the systems library paths.
$ export LD_LIBRARY_PATH=<libcxx-install-prefix>/lib
$ ./a.out # Searches for libc++ along LD_LIBRARY_PATH
Using libc++experimental and <experimental/...>
¶
Libc++ provides implementations of experimental technical specifications
in a separate library, libc++experimental.a
. Users of <experimental/...>
headers may be required to link -lc++experimental
.
$ clang++ -std=c++14 -stdlib=libc++ test.cpp -lc++experimental
Libc++experimental.a may not always be available, even when libc++ is already installed. For information on building libc++experimental from source see Building Libc++ and libc++experimental CMake Options.
Also see the Experimental Library Implementation Status page.
Warning
- Experimental libraries are Experimental.
- The contents of the
<experimental/...>
headers andlibc++experimental.a
library will not remain compatible between versions. - No guarantees of API or ABI stability are provided.
- The contents of the
Using libc++ on Linux¶
On Linux libc++ can typically be used with only ‘-stdlib=libc++’. However some libc++ installations require the user manually link libc++abi themselves. If you are running into linker errors when using libc++ try adding ‘-lc++abi’ to the link line. For example:
$ clang++ -stdlib=libc++ test.cpp -lc++ -lc++abi -lm -lc -lgcc_s -lgcc
Alternately, you could just add libc++abi to your libraries list, which in most situations will give the same result:
$ clang++ -stdlib=libc++ test.cpp -lc++abi
Using libc++ with GCC¶
GCC does not provide a way to switch from libstdc++ to libc++. You must manually configure the compile and link commands.
In particular you must tell GCC to remove the libstdc++ include directories
using -nostdinc++
and to not link libstdc++.so using -nodefaultlibs
.
Note that -nodefaultlibs
removes all of the standard system libraries and
not just libstdc++ so they must be manually linked. For example:
$ g++ -nostdinc++ -I<libcxx-install-prefix>/include/c++/v1 \
test.cpp -nodefaultlibs -lc++ -lc++abi -lm -lc -lgcc_s -lgcc
GDB Pretty printers for libc++¶
GDB does not support pretty-printing of libc++ symbols by default. Unfortunately libc++ does not provide pretty-printers itself. However there are 3rd party implementations available and although they are not officially supported by libc++ they may be useful to users.
Known 3rd Party Implementations Include:
Libc++ Configuration Macros¶
Libc++ provides a number of configuration macros which can be used to enable or disable extended libc++ behavior, including enabling “debug mode” or thread safety annotations.
- _LIBCPP_DEBUG:
- See Using Debug Mode for more information.
- _LIBCPP_ENABLE_THREAD_SAFETY_ANNOTATIONS:
- This macro is used to enable -Wthread-safety annotations on libc++’s
std::mutex
andstd::lock_guard
. By default these annotations are disabled and must be manually enabled by the user. - _LIBCPP_DISABLE_VISIBILITY_ANNOTATIONS:
- This macro is used to disable all visibility annotations inside libc++. Defining this macro and then building libc++ with hidden visibility gives a build of libc++ which does not export any symbols, which can be useful when building statically for inclusion into another library.
- _LIBCPP_DISABLE_EXTERN_TEMPLATE:
- This macro is used to disable extern template declarations in the libc++ headers. The intended use case is for clients who wish to use the libc++ headers without taking a dependency on the libc++ library itself.
- _LIBCPP_ENABLE_TUPLE_IMPLICIT_REDUCED_ARITY_EXTENSION:
This macro is used to re-enable an extension in std::tuple which allowed it to be implicitly constructed from fewer initializers than contained elements. Elements without an initializer are default constructed. For example:
std::tuple<std::string, int, std::error_code> foo() { return {"hello world", 42}; // default constructs error_code }
Since libc++ 4.0 this extension has been disabled by default. This macro may be defined to re-enable it in order to support existing code that depends on the extension. New use of this extension should be discouraged. See PR 27374 for more information.
Note: The “reduced-arity-initialization” extension is still offered but only for explicit conversions. Example:
auto foo() { using Tup = std::tuple<std::string, int, std::error_code>; return Tup{"hello world", 42}; // explicit constructor called. OK. }
- _LIBCPP_DISABLE_ADDITIONAL_DIAGNOSTICS:
This macro disables the additional diagnostics generated by libc++ using the diagnose_if attribute. These additional diagnostics include checks for:
- Giving set, map, multiset, multimap a comparator which is not const callable.
C++17 Specific Configuration Macros¶
- _LIBCPP_ENABLE_CXX17_REMOVED_FEATURES:
- This macro is used to re-enable all the features removed in C++17. The effect is equivalent to manually defining each macro listed below.
- _LIBCPP_ENABLE_CXX17_REMOVED_UNEXPECTED_FUNCTIONS:
- This macro is used to re-enable the set_unexpected, get_unexpected, and unexpected functions, which were removed in C++17.
- _LIBCPP_ENABLE_CXX17_REMOVED_AUTO_PTR:
- This macro is used to re-enable std::auto_ptr in C++17.