Clang 3.7 documentation

Control Flow Integrity Design Documentation

«  Control Flow Integrity   ::   Contents   ::   SafeStack  »

Control Flow Integrity Design Documentation

This page documents the design of the Control Flow Integrity schemes supported by Clang.

Forward-Edge CFI for Virtual Calls

This scheme works by allocating, for each static type used to make a virtual call, a region of read-only storage in the object file holding a bit vector that maps onto to the region of storage used for those virtual tables. Each set bit in the bit vector corresponds to the address point for a virtual table compatible with the static type for which the bit vector is being built.

For example, consider the following three C++ classes:

struct A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct C : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

The scheme will cause the virtual tables for A, B and C to be laid out consecutively:

Virtual Table Layout for A, B, C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A::offset-to-top &A::rtti &A::f1 &A::f2 &A::f3 B::offset-to-top &B::rtti &B::f1 &B::f2 &B::f3 C::offset-to-top &C::rtti &C::f1 &C::f2 &C::f3

The bit vector for static types A, B and C will look like this:

Bit Vectors for A, B, C
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Bit vectors are represented in the object file as byte arrays. By loading from indexed offsets into the byte array and applying a mask, a program can test bits from the bit set with a relatively short instruction sequence. Bit vectors may overlap so long as they use different bits. For the full details, see the ByteArrayBuilder class.

In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in bit 1 and C at offset 0 in bit 2, the byte array would look like this:

char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };

To emit a virtual call, the compiler will assemble code that checks that the object’s virtual table pointer is in-bounds and aligned and that the relevant bit is set in the bit vector.

For example on x86 a typical virtual call may look like this:

ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
ca7fc5:       48 89 c8                mov    %rcx,%rax
ca7fc8:       48 29 d0                sub    %rdx,%rax
ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
ca7fd5:       0f 87 36 05 00 00       ja     ca8511
ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
ca7fe6:       0f 84 25 05 00 00       je     ca8511
ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
  [...]
ca8511:       0f 0b                   ud2

The compiler relies on co-operation from the linker in order to assemble the bit vectors for the whole program. It currently does this using LLVM’s bit sets mechanism together with link-time optimization.

Optimizations

The scheme as described above is the fully general variant of the scheme. Most of the time we are able to apply one or more of the following optimizations to improve binary size or performance.

In fact, if you try the above example with the current version of the compiler, you will probably find that it will not use the described virtual table layout or machine instructions. Some of the optimizations we are about to introduce cause the compiler to use a different layout or a different sequence of machine instructions.

Stripping Leading/Trailing Zeros in Bit Vectors

If a bit vector contains leading or trailing zeros, we can strip them from the vector. The compiler will emit code to check if the pointer is in range of the region covered by ones, and perform the bit vector check using a truncated version of the bit vector. For example, the bit vectors for our example class hierarchy will be emitted like this:

Bit Vectors for A, B, C
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A     1 0 0 0 0 1 0 0 0 0 1    
B               1              
C                         1    

Short Inline Bit Vectors

If the vector is sufficiently short, we can represent it as an inline constant on x86. This saves us a few instructions when reading the correct element of the bit vector.

If the bit vector fits in 32 bits, the code looks like this:

 dc2:       48 8b 03                mov    (%rbx),%rax
 dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
 dcc:       48 89 c1                mov    %rax,%rcx
 dcf:       48 29 d1                sub    %rdx,%rcx
 dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
 dd6:       48 83 f9 03             cmp    $0x3,%rcx
 dda:       77 2f                   ja     e0b <main+0x9b>
 ddc:       ba 09 00 00 00          mov    $0x9,%edx
 de1:       0f a3 ca                bt     %ecx,%edx
 de4:       73 25                   jae    e0b <main+0x9b>
 de6:       48 89 df                mov    %rbx,%rdi
 de9:       ff 10                   callq  *(%rax)
[...]
 e0b:       0f 0b                   ud2

Or if the bit vector fits in 64 bits:

11a6:       48 8b 03                mov    (%rbx),%rax
11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
11b0:       48 89 c1                mov    %rax,%rcx
11b3:       48 29 d1                sub    %rdx,%rcx
11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
11be:       77 35                   ja     11f5 <main+0xb5>
11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
11c7:       04 00 00
11ca:       48 0f a3 ca             bt     %rcx,%rdx
11ce:       73 25                   jae    11f5 <main+0xb5>
11d0:       48 89 df                mov    %rbx,%rdi
11d3:       ff 10                   callq  *(%rax)
[...]
11f5:       0f 0b                   ud2

If the bit vector consists of a single bit, there is only one possible virtual table, and the check can consist of a single equality comparison:

9a2:   48 8b 03                mov    (%rbx),%rax
9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
9ac:   48 39 c8                cmp    %rcx,%rax
9af:   75 25                   jne    9d6 <main+0x86>
9b1:   48 89 df                mov    %rbx,%rdi
9b4:   ff 10                   callq  *(%rax)
[...]
9d6:   0f 0b                   ud2

Virtual Table Layout

The compiler lays out classes of disjoint hierarchies in separate regions of the object file. At worst, bit vectors in disjoint hierarchies only need to cover their disjoint hierarchy. But the closer that classes in sub-hierarchies are laid out to each other, the smaller the bit vectors for those sub-hierarchies need to be (see “Stripping Leading/Trailing Zeros in Bit Vectors” above). The GlobalLayoutBuilder class is responsible for laying out the globals efficiently to minimize the sizes of the underlying bitsets.

Alignment

If all gaps between address points in a particular bit vector are multiples of powers of 2, the compiler can compress the bit vector by strengthening the alignment requirements of the virtual table pointer. For example, given this class hierarchy:

struct A {
  virtual void f1();
  virtual void f2();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
  virtual void f4();
  virtual void f5();
  virtual void f6();
};

struct C : A {
  virtual void f1();
  virtual void f2();
};

The virtual tables will be laid out like this:

Virtual Table Layout for A, B, C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A::offset-to-top &A::rtti &A::f1 &A::f2 B::offset-to-top &B::rtti &B::f1 &B::f2 &B::f3 &B::f4 &B::f5 &B::f6 C::offset-to-top &C::rtti &C::f1 &C::f2

Notice that each address point for A is separated by 4 words. This lets us emit a compressed bit vector for A that looks like this:

2 6 10 14
1 1 0 1

At call sites, the compiler will strengthen the alignment requirements by using a different rotate count. For example, on a 64-bit machine where the address points are 4-word aligned (as in A from our example), the rol instruction may look like this:

dd2:       48 c1 c1 3b             rol    $0x3b,%rcx

Padding to Powers of 2

Of course, this alignment scheme works best if the address points are in fact aligned correctly. To make this more likely to happen, we insert padding between virtual tables that in many cases aligns address points to a power of 2. Specifically, our padding aligns virtual tables to the next highest power of 2 bytes; because address points for specific base classes normally appear at fixed offsets within the virtual table, this normally has the effect of aligning the address points as well.

This scheme introduces tradeoffs between decreased space overhead for instructions and bit vectors and increased overhead in the form of padding. We therefore limit the amount of padding so that we align to no more than 128 bytes. This number was found experimentally to provide a good tradeoff.

Eliminating Bit Vector Checks for All-Ones Bit Vectors

If the bit vector is all ones, the bit vector check is redundant; we simply need to check that the address is in range and well aligned. This is more likely to occur if the virtual tables are padded.

«  Control Flow Integrity   ::   Contents   ::   SafeStack  »