How to Update Debug Info: A Guide for LLVM Pass Authors¶
Introduction¶
Certain kinds of code transformations can inadvertently result in a loss of debug info, or worse, make debug info misrepresent the state of a program.
This document specifies how to correctly update debug info in various kinds of code transformations, and offers suggestions for how to create targeted debug info tests for arbitrary transformations.
For more on the philosophy behind LLVM debugging information, see Source Level Debugging with LLVM.
Rules for updating debug locations¶
When to preserve an instruction location¶
A transformation should preserve the debug location of an instruction if the
instruction either remains in its basic block, or if its basic block is folded
into a predecessor that branches unconditionally. The APIs to use are
IRBuilder
, or Instruction::setDebugLoc
.
The purpose of this rule is to ensure that common block-local optimizations preserve the ability to set breakpoints on source locations corresponding to the instructions they touch. Debugging, crash logs, and SamplePGO accuracy would be severely impacted if that ability were lost.
Examples of transformations that should follow this rule include:
Instruction scheduling. Block-local instruction reordering should not drop source locations, even though this may lead to jumpy single-stepping behavior.
Simple jump threading. For example, if block
B1
unconditionally jumps toB2
, and is its unique predecessor, instructions fromB2
can be hoisted intoB1
. Source locations fromB2
should be preserved.Peephole optimizations that replace or expand an instruction, like
(add X X) => (shl X 1)
. The location of theshl
instruction should be the same as the location of theadd
instruction.Tail duplication. For example, if blocks
B1
andB2
both unconditionally branch toB3
andB3
can be folded into its predecessors, source locations fromB3
should be preserved.
Examples of transformations for which this rule does not apply include:
LICM. E.g., if an instruction is moved from the loop body to the preheader, the rule for dropping locations applies.
In addition to the rule above, a transformation should also preserve the debug location of an instruction that is moved between basic blocks, if the destination block already contains an instruction with an identical debug location.
Examples of transformations that should follow this rule include:
Moving instructions between basic blocks. For example, if instruction
I1
inBB1
is moved beforeI2
inBB2
, the source location ofI1
can be preserved if it has the same source location asI2
.
When to merge instruction locations¶
A transformation should merge instruction locations if it replaces multiple
instructions with a single merged instruction, and that merged instruction
does not correspond to any of the original instructions’ locations. The API to
use is Instruction::applyMergedLocation
.
The purpose of this rule is to ensure that a) the single merged instruction has a location with an accurate scope attached, and b) to prevent misleading single-stepping (or breakpoint) behavior. Often, merged instructions are memory accesses which can trap: having an accurate scope attached greatly assists in crash triage by identifying the (possibly inlined) function where the bad memory access occurred. This rule is also meant to assist SamplePGO by banning scenarios in which a sample of a block containing a merged instruction is misattributed to a block containing one of the instructions-to-be-merged.
Examples of transformations that should follow this rule include:
Merging identical loads/stores which occur on both sides of a CFG diamond (see the
MergedLoadStoreMotion
pass).Merging identical loop-invariant stores (see the LICM utility
llvm::promoteLoopAccessesToScalars
).Peephole optimizations which combine multiple instructions together, like
(add (mul A B) C) => llvm.fma.f32(A, B, C)
. Note that the location of thefma
does not exactly correspond to the locations of either themul
or theadd
instructions.
Examples of transformations for which this rule does not apply include:
Block-local peepholes which delete redundant instructions, like
(sext (zext i8 %x to i16) to i32) => (zext i8 %x to i32)
. The innerzext
is modified but remains in its block, so the rule for preserving locations should apply.Converting an if-then-else CFG diamond into a
select
. Preserving the debug locations of speculated instructions can make it seem like a condition is true when it’s not (or vice versa), which leads to a confusing single-stepping experience. The rule for dropping locations should apply here.Hoisting identical instructions which appear in several successor blocks into a predecessor block (see
BranchFolder::HoistCommonCodeInSuccs
). In this case there is no single merged instruction. The rule for dropping locations applies.
When to drop an instruction location¶
A transformation should drop debug locations if the rules for
preserving and
merging debug locations do not apply. The API to
use is Instruction::dropLocation()
.
The purpose of this rule is to prevent erratic or misleading single-stepping behavior in situations in which an instruction has no clear, unambiguous relationship to a source location.
To handle an instruction without a location, the DWARF generator defaults to allowing the last-set location after a label to cascade forward, or to setting a line 0 location with viable scope information if no previous location is available.
See the discussion in the section about merging locations for examples of when the rule for dropping locations applies.
Rules for updating debug values¶
Deleting an IR-level Instruction¶
When an Instruction
is deleted, its debug uses change to undef
. This is
a loss of debug info: the value of one or more source variables becomes
unavailable, starting with the llvm.dbg.value(undef, ...)
. When there is no
way to reconstitute the value of the lost instruction, this is the best
possible outcome. However, it’s often possible to do better:
If the dying instruction can be RAUW’d, do so. The
Value::replaceAllUsesWith
API transparently updates debug uses of the dying instruction to point to the replacement value.If the dying instruction cannot be RAUW’d, call
llvm::salvageDebugInfo
on it. This makes a best-effort attempt to rewrite debug uses of the dying instruction by describing its effect as aDIExpression
.If one of the operands of a dying instruction would become trivially dead, use
llvm::replaceAllDbgUsesWith
to rewrite the debug uses of that operand. Consider the following example function:
define i16 @foo(i16 %a) {
%b = sext i16 %a to i32
%c = and i32 %b, 15
call void @llvm.dbg.value(metadata i32 %c, ...)
%d = trunc i32 %c to i16
ret i16 %d
}
Now, here’s what happens after the unnecessary truncation instruction %d
is
replaced with a simplified instruction:
define i16 @foo(i16 %a) {
call void @llvm.dbg.value(metadata i32 undef, ...)
%simplified = and i16 %a, 15
ret i16 %simplified
}
Note that after deleting %d
, all uses of its operand %c
become
trivially dead. The debug use which used to point to %c
is now undef
,
and debug info is needlessly lost.
To solve this problem, do:
llvm::replaceAllDbgUsesWith(%c, theSimplifiedAndInstruction, ...)
This results in better debug info because the debug use of %c
is preserved:
define i16 @foo(i16 %a) {
%simplified = and i16 %a, 15
call void @llvm.dbg.value(metadata i16 %simplified, ...)
ret i16 %simplified
}
You may have noticed that %simplified
is narrower than %c
: this is not
a problem, because llvm::replaceAllDbgUsesWith
takes care of inserting the
necessary conversion operations into the DIExpressions of updated debug uses.
How to automatically convert tests into debug info tests¶
Mutation testing for IR-level transformations¶
An IR test case for a transformation can, in many cases, be automatically mutated to test debug info handling within that transformation. This is a simple way to test for proper debug info handling.
The debugify
utility pass¶
The debugify
testing utility is just a pair of passes: debugify
and
check-debugify
.
The first applies synthetic debug information to every instruction of the module, and the second checks that this DI is still available after an optimization has occurred, reporting any errors/warnings while doing so.
The instructions are assigned sequentially increasing line locations, and are immediately used by debug value intrinsics everywhere possible.
For example, here is a module before:
define void @f(i32* %x) {
entry:
%x.addr = alloca i32*, align 8
store i32* %x, i32** %x.addr, align 8
%0 = load i32*, i32** %x.addr, align 8
store i32 10, i32* %0, align 4
ret void
}
and after running opt -debugify
:
define void @f(i32* %x) !dbg !6 {
entry:
%x.addr = alloca i32*, align 8, !dbg !12
call void @llvm.dbg.value(metadata i32** %x.addr, metadata !9, metadata !DIExpression()), !dbg !12
store i32* %x, i32** %x.addr, align 8, !dbg !13
%0 = load i32*, i32** %x.addr, align 8, !dbg !14
call void @llvm.dbg.value(metadata i32* %0, metadata !11, metadata !DIExpression()), !dbg !14
store i32 10, i32* %0, align 4, !dbg !15
ret void, !dbg !16
}
!llvm.dbg.cu = !{!0}
!llvm.debugify = !{!3, !4}
!llvm.module.flags = !{!5}
!0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
!1 = !DIFile(filename: "debugify-sample.ll", directory: "/")
!2 = !{}
!3 = !{i32 5}
!4 = !{i32 2}
!5 = !{i32 2, !"Debug Info Version", i32 3}
!6 = distinct !DISubprogram(name: "f", linkageName: "f", scope: null, file: !1, line: 1, type: !7, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !8)
!7 = !DISubroutineType(types: !2)
!8 = !{!9, !11}
!9 = !DILocalVariable(name: "1", scope: !6, file: !1, line: 1, type: !10)
!10 = !DIBasicType(name: "ty64", size: 64, encoding: DW_ATE_unsigned)
!11 = !DILocalVariable(name: "2", scope: !6, file: !1, line: 3, type: !10)
!12 = !DILocation(line: 1, column: 1, scope: !6)
!13 = !DILocation(line: 2, column: 1, scope: !6)
!14 = !DILocation(line: 3, column: 1, scope: !6)
!15 = !DILocation(line: 4, column: 1, scope: !6)
!16 = !DILocation(line: 5, column: 1, scope: !6)
Using debugify
¶
A simple way to use debugify
is as follows:
$ opt -debugify -pass-to-test -check-debugify sample.ll
This will inject synthetic DI to sample.ll
run the pass-to-test
and
then check for missing DI. The -check-debugify
step can of course be
omitted in favor of more customizable FileCheck directives.
Some other ways to run debugify are available:
# Same as the above example.
$ opt -enable-debugify -pass-to-test sample.ll
# Suppresses verbose debugify output.
$ opt -enable-debugify -debugify-quiet -pass-to-test sample.ll
# Prepend -debugify before and append -check-debugify -strip after
# each pass on the pipeline (similar to -verify-each).
$ opt -debugify-each -O2 sample.ll
In order for check-debugify
to work, the DI must be coming from
debugify
. Thus, modules with existing DI will be skipped.
debugify
can be used to test a backend, e.g:
$ opt -debugify < sample.ll | llc -o -
There is also a MIR-level debugify pass that can be run before each backend pass, see: Mutation testing for MIR-level transformations.
debugify
in regression tests¶
The output of the debugify
pass must be stable enough to use in regression
tests. Changes to this pass are not allowed to break existing tests.
Note
Regression tests must be robust. Avoid hardcoding line/variable numbers in check lines. In cases where this can’t be avoided (say, if a test wouldn’t be precise enough), moving the test to its own file is preferred.
Test original debug info preservation in optimizations¶
In addition to automatically generating debug info, the checks provided by
the debugify
utility pass can also be used to test the preservation of
pre-existing debug info metadata. It could be run as follows:
# Run the pass by checking original Debug Info preservation.
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
# Check the preservation of original Debug Info after each pass.
$ opt -verify-each-debuginfo-preserve -O2 sample.ll
Furthermore, there is a way to export the issues that have been found into a JSON file as follows:
$ opt -verify-debuginfo-preserve -verify-di-preserve-export=sample.json -pass-to-test sample.ll
and then use the llvm/utils/llvm-original-di-preservation.py
script
to generate an HTML page with the issues reported in a more human readable form
as follows:
$ llvm-original-di-preservation.py sample.json sample.html
Testing of original debug info preservation can be invoked from front-end level as follows:
# Test each pass.
$ clang -Xclang -fverify-debuginfo-preserve -g -O2 sample.c
# Test each pass and export the issues report into the JSON file.
$ clang -Xclang -fverify-debuginfo-preserve -Xclang -fverify-debuginfo-preserve-export=sample.json -g -O2 sample.c
Please do note that there are some known false positives, for source locations and debug intrinsic checking, so that will be addressed as a future work.
Mutation testing for MIR-level transformations¶
A variant of the debugify
utility described in
Mutation testing for IR-level transformations can be used
for MIR-level transformations as well: much like the IR-level pass,
mir-debugify
inserts sequentially increasing line locations to each
MachineInstr
in a Module
. And the MIR-level mir-check-debugify
is
similar to IR-level check-debugify
pass.
For example, here is a snippet before:
name: test
body: |
bb.1 (%ir-block.0):
%0:_(s32) = IMPLICIT_DEF
%1:_(s32) = IMPLICIT_DEF
%2:_(s32) = G_CONSTANT i32 2
%3:_(s32) = G_ADD %0, %2
%4:_(s32) = G_SUB %3, %1
and after running llc -run-pass=mir-debugify
:
name: test
body: |
bb.0 (%ir-block.0):
%0:_(s32) = IMPLICIT_DEF debug-location !12
DBG_VALUE %0(s32), $noreg, !9, !DIExpression(), debug-location !12
%1:_(s32) = IMPLICIT_DEF debug-location !13
DBG_VALUE %1(s32), $noreg, !11, !DIExpression(), debug-location !13
%2:_(s32) = G_CONSTANT i32 2, debug-location !14
DBG_VALUE %2(s32), $noreg, !9, !DIExpression(), debug-location !14
%3:_(s32) = G_ADD %0, %2, debug-location !DILocation(line: 4, column: 1, scope: !6)
DBG_VALUE %3(s32), $noreg, !9, !DIExpression(), debug-location !DILocation(line: 4, column: 1, scope: !6)
%4:_(s32) = G_SUB %3, %1, debug-location !DILocation(line: 5, column: 1, scope: !6)
DBG_VALUE %4(s32), $noreg, !9, !DIExpression(), debug-location !DILocation(line: 5, column: 1, scope: !6)
By default, mir-debugify
inserts DBG_VALUE
instructions everywhere
it is legal to do so. In particular, every (non-PHI) machine instruction that
defines a register must be followed by a DBG_VALUE
use of that def. If
an instruction does not define a register, but can be followed by a debug inst,
MIRDebugify inserts a DBG_VALUE
that references a constant. Insertion of
DBG_VALUE
’s can be disabled by setting -debugify-level=locations
.
To run MIRDebugify once, simply insert mir-debugify
into your llc
invocation, like:
# Before some other pass.
$ llc -run-pass=mir-debugify,other-pass ...
# After some other pass.
$ llc -run-pass=other-pass,mir-debugify ...
To run MIRDebugify before each pass in a pipeline, use
-debugify-and-strip-all-safe
. This can be combined with -start-before
and -start-after
. For example:
$ llc -debugify-and-strip-all-safe -run-pass=... <other llc args>
$ llc -debugify-and-strip-all-safe -O1 <other llc args>
If you want to check it after each pass in a pipeline, use
-debugify-check-and-strip-all-safe
. This can also be combined with
-start-before
and -start-after
. For example:
$ llc -debugify-check-and-strip-all-safe -run-pass=... <other llc args>
$ llc -debugify-check-and-strip-all-safe -O1 <other llc args>
To check all debug info from a test, use mir-check-debugify
, like:
$ llc -run-pass=mir-debugify,other-pass,mir-check-debugify
To strip out all debug info from a test, use mir-strip-debug
, like:
$ llc -run-pass=mir-debugify,other-pass,mir-strip-debug
It can be useful to combine mir-debugify
, mir-check-debugify
and/or
mir-strip-debug
to identify backend transformations which break in
the presence of debug info. For example, to run the AArch64 backend tests
with all normal passes “sandwiched” in between MIRDebugify and
MIRStripDebugify mutation passes, run:
$ llvm-lit test/CodeGen/AArch64 -Dllc="llc -debugify-and-strip-all-safe"