4. Building a JIT: Extreme Laziness - Using Compile Callbacks to JIT from ASTs¶
This tutorial is under active development. It is incomplete and details may change frequently. Nonetheless we invite you to try it out as it stands, and we welcome any feedback.
4.1. Chapter 4 Introduction¶
Welcome to Chapter 4 of the “Building an ORC-based JIT in LLVM” tutorial. This chapter introduces the Compile Callbacks and Indirect Stubs APIs and shows how they can be used to replace the CompileOnDemand layer from Chapter 3 with a custom lazy-JITing scheme that JITs directly from Kaleidoscope ASTs.
To be done:
(1) Describe the drawbacks of JITing from IR (have to compile to IR first, which reduces the benefits of laziness).
(2) Describe CompileCallbackManagers and IndirectStubManagers in detail.
(3) Run through the implementation of addFunctionAST.
4.2. Full Code Listing¶
Here is the complete code listing for our running example that JITs lazily from Kaleidoscope ASTS. To build this example, use:
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy
Here is the code:
//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>
class PrototypeAST;
class ExprAST;
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
const PrototypeAST& getProto() const;
const std::string& getName() const;
llvm::Function *codegen();
};
/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
namespace llvm {
namespace orc {
class KaleidoscopeJIT {
private:
ExecutionSession ES;
std::shared_ptr<SymbolResolver> Resolver;
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
LegacyRTDyldObjectLinkingLayer ObjectLayer;
LegacyIRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
using OptimizeFunction =
std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;
LegacyIRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
public:
KaleidoscopeJIT()
: Resolver(createLegacyLookupResolver(
ES,
[this](StringRef Name) -> JITSymbol {
if (auto Sym = IndirectStubsMgr->findStub(Name, false))
return Sym;
if (auto Sym = OptimizeLayer.findSymbol(std::string(Name), false))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
if (auto SymAddr = RTDyldMemoryManager::getSymbolAddressInProcess(
std::string(Name)))
return JITSymbol(SymAddr, JITSymbolFlags::Exported);
return nullptr;
},
[](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
ObjectLayer(AcknowledgeORCv1Deprecation, ES,
[this](VModuleKey K) {
return LegacyRTDyldObjectLinkingLayer::Resources{
std::make_shared<SectionMemoryManager>(), Resolver};
}),
CompileLayer(AcknowledgeORCv1Deprecation, ObjectLayer,
SimpleCompiler(*TM)),
OptimizeLayer(AcknowledgeORCv1Deprecation, CompileLayer,
[this](std::unique_ptr<Module> M) {
return optimizeModule(std::move(M));
}),
CompileCallbackMgr(cantFail(orc::createLocalCompileCallbackManager(
TM->getTargetTriple(), ES, 0))) {
auto IndirectStubsMgrBuilder =
orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
IndirectStubsMgr = IndirectStubsMgrBuilder();
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}
TargetMachine &getTargetMachine() { return *TM; }
VModuleKey addModule(std::unique_ptr<Module> M) {
// Add the module to the JIT with a new VModuleKey.
auto K = ES.allocateVModule();
cantFail(OptimizeLayer.addModule(K, std::move(M)));
return K;
}
Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
// capture-by-move, which is be required for unique_ptr.
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
// Set the action to compile our AST. This lambda will be run if/when
// execution hits the compile callback (via the stub).
//
// The steps to compile are:
// (1) IRGen the function.
// (2) Add the IR module to the JIT to make it executable like any other
// module.
// (3) Use findSymbol to get the address of the compiled function.
// (4) Update the stub pointer to point at the implementation so that
/// subsequent calls go directly to it and bypass the compiler.
// (5) Return the address of the implementation: this lambda will actually
// be run inside an attempted call to the function, and we need to
// continue on to the implementation to complete the attempted call.
// The JIT runtime (the resolver block) will use the return address of
// this function as the address to continue at once it has reset the
// CPU state to what it was immediately before the call.
auto CompileAction = [this, SharedFnAST]() {
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
addModule(std::move(M));
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
assert(Sym && "Couldn't find compiled function?");
JITTargetAddress SymAddr = cantFail(Sym.getAddress());
if (auto Err = IndirectStubsMgr->updatePointer(
mangle(SharedFnAST->getName()), SymAddr)) {
logAllUnhandledErrors(std::move(Err), errs(),
"Error updating function pointer: ");
exit(1);
}
return SymAddr;
};
// Create a CompileCallback using the CompileAction - this is the re-entry
// point into the compiler for functions that haven't been compiled yet.
auto CCAddr = cantFail(
CompileCallbackMgr->getCompileCallback(std::move(CompileAction)));
// Create an indirect stub. This serves as the functions "canonical
// definition" - an unchanging (constant address) entry point to the
// function implementation.
// Initially we point the stub's function-pointer at the compile callback
// that we just created. When the compile action for the callback is run we
// will update the stub's function pointer to point at the function
// implementation that we just implemented.
if (auto Err = IndirectStubsMgr->createStub(
mangle(SharedFnAST->getName()), CCAddr, JITSymbolFlags::Exported))
return Err;
return Error::success();
}
JITSymbol findSymbol(const std::string Name) {
return OptimizeLayer.findSymbol(mangle(Name), true);
}
void removeModule(VModuleKey K) {
cantFail(OptimizeLayer.removeModule(K));
}
private:
std::string mangle(const std::string &Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return MangledNameStream.str();
}
std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
// Create a function pass manager.
auto FPM = std::make_unique<legacy::FunctionPassManager>(M.get());
// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();
// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);
return M;
}
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
Next: Remote-JITing – Process-isolation and laziness-at-a-distance